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Fusion powers the sun and the stars … and
maybe one day our communities

   The goal of upcoming experiments on the National Ignition Facility (NIF) is to
achieve fusion in a laboratory setting

Fusion is accomplished via gravitational,
magnetic and inertial confinement

Fusing deuterium and tritium into a helium
nucleus releases an energetic neutron
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Inertial confinement fusion (ICF) relies on the
inertia of the fuel to provide confinement
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•  INDIRECT DRIVE:  laser energy is
   converted to x-ray energy by target

•  x-rays bathe ICF capsule,
   heating it up -- it expands

•  conservation of momentum:  ablated
   shell expands outward, rest of shell
   (frozen DT) is forced inward

•  fusion initiates in a central hot spot
  containing ~ 5% of the fuel, and a thermo-
  nuclear burn front propagates outward
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Our focus is on LPI mitigation in NIF ignition targets

Laser-plasma interactions (LPI) can result in direct
energy loss or re-direction for laser-driven targets 

Energy Loss  low Tr

SBS:  laser scatters off self-generated
          ion acoustic waves (iaws)

SRS:  laser scatters off self-generated
          electron plasma waves (epws)

Laser

Backscatter

Energy Re-direction  symmetry loss

Beam spray:  laser hotspots dig density
      wells -- refract, intensify & scatter light

Beam bending:  in transverse flow, light
      advects with density wells

Crossed beam transfer:  inner-to-outer energy
      transfer via scatter from mutually
      driven iaws
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Our challenge:  incorporate all necessary physics at all relevant length and time
scales

LPI processes span a wide range of length and
time scales

•   Hydrodynamic length and time scales are set by 
     target size [O(mm)] and laser pulse length [O(ns)]

  environment  --   plasma parameters
                                    and scale lengths 
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•   Detailed processes of LPI occur on “light” spatial 
     and temporal scales
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Multi-scale codes,  beam data & validation   development of a predictive capability

Our approach to multi-scale modeling
uses a suite of tools
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pF3D models laser propagation on the mesoscale

Background plasma:
•   described by standard (nonlinear) fluid model
•   couples to laser via ponderomotive (radiation) pressure, inverse bremsstrahlung

E0 : incident laser

Eb : SBS; driven by nbE0
Er : SRS; driven by nrE0

Fields Plasma Response

nb (iaw): driven by E0Eb

nr (epw): driven by E0Er

advection propagation absorption refraction SBS
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SRS
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•  paraxial wave equation spatially/temporally envelopes about 
   local wavenumber/frequency:

pF3D simulations couple wave propagation
(paraxial) to a plasma fluid model
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Z3 simulations couple particle motion to
Maxwell s equations in 3D

Collect ,J

Z3 models LPI on the microscale
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Rapidly increasing computer performance enables 
LPI calculations unimaginable twelve years ago

Our grand challenge award enables the unprecedented simulations we perform in
support of the National Ignition Campaign
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     1994
• serial code
• linearized hydro
• filamentation only 

.05 x .05 
x .2 mm3

        2004
• massively parallel
• nonlinear hydro
• filamentation, SBS, SRS
• saturation models

.05 x .05 
   x 5 mm3 2 x 2 x 2 mm3

       2007
• enhanced hydro
• enhanced SRS model
• optimized parallelization

.2 x 2 x 6 mm3
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The 2005 Jasons NIF review emphasized
the need for 3D LPI simulations of ignition designs

•  Prior to 2005:  one whole beam simulation performed on Thunder under
   early science runs  (300 eV)

 --  didn t include effects of transverse gradients in the plasma profiles
 --  ignition design has significantly evolved since the Thunder simulation

Without such simulations, we do not have a complete energetics story for ignition

•  Fall 2006:  first whole beam simulation with transverse gradients on 4096 Purple
cpus  (300 eV)

--  simulation of outer beam propagating through gold blow-off near the wall
--  spot size, power, and plasma conditions have further evolved in recent
    designs

• 2007:  whole beam simulations with transverse gradients and a realistic beam
on 4096-8192 cpus of Atlas  (285 eV and 300 eV)
       -- 300 eV (two whole beam simulations)
       -- 285 eV (230 and 300 beam propagation simulations)
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First beam propagation simulation:
           --  inner beam of the point design

* Design by D. A. Callahan

Such simulations had never before been performed

300 eV*
0.937 MJ Laser Energy

Inner Beams:  590 x 824 μm2 

Outer Beams:  343 x 593 μm2 ra
di

i

9.2 mm

2.
55

 m
m

He gas fill

1 mm capsule
with 

Be ablator
Yield:  11.6  MJ

Au liner over
cocktail wall

•  this point design optimizes a trade-off between 
    large spots (lower intensity) and ability to 
    re-point beams (smaller spots) 

•  preliminary analyses of the SRS/SBS kinetic gain
   indicated inner beams were the prime candidate for
   further LPI analysis 

•  analyze beam reflectivity and transmission 

•  provide predictive backscatter images and spectra

Our goals were to:
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•  Near-whole beam (3D) simulations  capture
   effects of transverse gradients and refraction

•  capability development performed on rhea and
    redstorm

•  whole beam runs performed on 8192 atlas cpus

We were able to simulate beam propagation using
nearly all of Atlas

Be

hohlraum wall

6% SBS
8% SRS

First Whole Beam Simulation
For FY09 Ignition Targets:

Propagate Beam 1 mm

These simulations are unprecedented both in size and in incorporated physics

300 eV

Second Simulation:
Propagate Letterbox Beam 3.5 mm

(2D Rendering)

refractive
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 Electron Density at Peak Laser Power
300 eV Design 
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In these massively parallel simulations, we
propagate a“letterbox” beam

“Approximate”  NIF Inner Beam
300 eV

Letterbox

•  A letterbox samples all of the radial plasma variations that the full beam does
•  This letterbox contains ~ 44% of the total beam power

Whole Beam Simulation Near-Whole Beam Simulation* 

300 eV: Inner Beam
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The whole beam propagated 1 mm, and the
letterbox beam propagated 3.5 mm

Propagate Letterbox Beam
3.5 mm  (2D Rendering)
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< 1% SBS
2.5% SRS

These simulations capture refractive, scattering and re-absorption effects

Propagate Whole Beam
1 mm  (2D Rendering)

0.40.20
z  (cm)
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r
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< 1%
SBS
2.5%
SRS

refraction

6% SBS
8% SRS
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We use detailed plasma profiles from rad-hydro
simulations near peak power

The two-dimensional Cartesian plasma profiles undergo azimuthal rotation to
formulate the 3D pF3D input

Lasnex Profiles

z (cm)

r (cm)

z (cm)

r (cm)

Cartesian Mesh Profiles pF3D Profiles
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Measured reflectivity may be low because
backscattered light is re-absorbed

Reduced transmissivity can alter target symmetry;
D. A. Callahan has shown re-tuned symmetry even with impaired propagation

300 eV Be target --  23o beam, circa peak power -- Rtotal ~ 3.5%

300 eV Inner Beam

Calculate transmission
through density contours:

Transmission
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These simulations provided motivation to reduce the
radiation temperature from 300 to 285 eV

* Design by D. A. Callahan

We have also simulated beam propagation in this present point design and its 96-beam
emulator

285 eV*
1.21 MJ Laser Energy 

Inner Beams:  693 x 968 μm2 

Outer Beams:  404 x 697 μm2 

H/He gas fill

2.
99

 m
m

1.2 mm capsule
with 

Be ablator

10.8 mm

Yield:  20  MJ

Au/B liner over
cocktail wall

•  at 285 eV, laser intensity is lower            less reflectivity (linear analysis) 

96-beam emulator:
scale by 60%

** Design by N. B. Meezan

Materials

96-beam

ignition

285 eV**
0.35 MJ Laser Energy 
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Propagation simulations of the 285 eV point
design and its emulator show low reflectivity

285 eV Point Design:  30o beam
circa peak power

•  4096 Atlas cpus
•  ~ 35,000 cpu-days

We are currently investigating why reflectivity doesn t scale with the target size

285 eV Emulator:  30o beam
circa peak power

z  (cm)

SRS: ~ 3.7%
SBS: ~ 3.1% 

r  
(cm)

•  3072 Atlas cpus
•  ~ 25,000 cpu-days

r  
(cm)

z  (cm)

SRS: ~ 4.5%
SBS: ~ 1% 
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Forward propagating beam for the 285 eV ignition
and emulator designs:
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SBS occurs on the capsule side of the beam,
in the ablator blow-off
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SRS occurs predominantly on the wall side of
the beam, in the gas fill
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The majority of the reflected SBS light comes
from the  upper beams of a quad

This is consistent with SBS occurring on the capsule side of the beam

65% in FABS

y

x x

62% in FABS

y

285 eV Point Design:
30o beam circa peak power

285 eV Emulator:
30o beam circa peak power
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The majority of the reflected SRS light is
outside the lenses

The longer wavelength SRS light refracts differently than the incident light

285 eV Point Design:
30o beam circa peak power

285 eV Emulator:
30o beam circa peak power

y

14% in FABS

x

20% in FABS

x
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.3D Z3 simulations show evidence of saturation
mechanisms currently not included in pF3D

We will be analyzing the energetic significance of this saturation mechanism

•  3D Z3 simulation at plasma parameters relevant to
the 285 eV point design:

ne = 1 x 1021 /cm3, Te = 2 keV,

                                    0 = 0.351 μm, I = 2 x 1015 W/cm2

•  simulation volume:   24 x   3  x  130  0
3

Electron Plasma Wave
Electric Field at y=0

•  performed on 3072 Atlas cpus for 20,000 cpu-days

•  wavefront bowing:  leads to self-focusing and break-
up of the wave

-- can saturate SRS at levels lower than predicted
by linear analyses

•  phenomenon seen in simulations at lower Te and
higher I 0

2

•  first time this has been seen in NIF-relevant plasmas
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In summary, we now have a capability to simulate
beam propagation in ignition targets

The ultimate question:  can we scale up to 1 million cpus?

•  pF3D scales reasonably well to 8192 Atlas cpus and 32768 bgl cpus
   -- and thus we can perform near-whole-beam simulations

•  Future simulations will be focused on:
•  contingency ignition designs

           -- estimates indicate beam propagation might be better in these targets
           -- such simulations will further guide revising the point design

•  ignition designs using green laser light rather than blue
    -- in these designs, PIC analyses will be critical

•  Z3 scales reasonably well to 8192 Atlas cpus
   -- and thus we can perform near-speckle PIC simulations

•  We are able to use macroscale plasma profiles (from Lasnex and Hydra)
    in pF3D -- includes effects of both axial and transverse gradients

•  In the current ignition point design (at 285 eV) we predict low reflectivity (< 7%)
   -- reflectivity may be even lower because of electron plasma wave break-up
   -- transmission is currently under analysis


